Commit cf56ccc4 authored by wenwen.tang's avatar wenwen.tang 😕

调仓日可指定任意日期

parent 18c7d36d
......@@ -86,6 +86,7 @@ portfolios: # 投组模块
dividend-date: 15 #配息日,每月15号
dividend-adjust-day: [1,4,7,10] #每年的首个季度调整配息
warehouse-frequency: 1 #每隔1个月调一次仓
warehouse-transfer-date: 1 #调仓日
solver: # 解算器相关
tol: 1E-10 # 误差满足条件
navs: # 净值要求
......
......@@ -51,7 +51,7 @@ py-jftech:
max-workers: ${MAX_PROCESS:4}
basic: # 基础信息模块
sync:
start-date: 1990-01-01 # 同步数据开始日期
start-date: 2018-08-26 # 同步数据开始日期
datum: # 资料模块
change:
date: ${DATUM_CHANGE_DATE}
......@@ -85,11 +85,12 @@ portfolios: # 投组模块
dividend-date: 15 #配息日,每月15号
dividend-adjust-day: [1,4,7,10] #每年的首个季度调整配息
warehouse-frequency: 1 #每隔1个月调一次仓
warehouse-transfer-date: 1 #调仓日
redeem-list: [ 'TEUSAAU LX Equity', 'LIGTRAA ID Equity', 'TEMFHAC LX Equity', 'LUSHUAA ID Equity' ] #从持仓中的低风险资产“直接”按序赎回
solver: # 解算器相关
model: arc # 结算模型 ARC ,PRR, ~ 标准解算器
model: prr # 结算模型 ARC ,PRR, ~ 标准解算器
arc: on #是否开启ARC
brr: 0.01 #误差补偿值
brr: 0.02 #误差补偿值
trr: 3
tol: 1E-10 # 误差满足条件
navs: # 净值要求
......@@ -98,9 +99,9 @@ portfolios: # 投组模块
max-nan: # 最大缺失净值条件
asset: 8 # 单一资产最多缺少多少交易日数据,则踢出资产池
day: 0.5 # 单一交易日最多缺少百分之多少净值,则删除该交易日
risk: [] # 资产风险等级要求,可分开写也可以合并写,e.g. risk:[ 2, 3 ] 则表示 所有投组资产风险等级都是 2 或 3
LARC: [0.5, 0.1, 0.1, 0.1] #低阈值
UARC: [0.7, 0.25, 0.25, 0.25] #高阈值
risk: [ ] # 资产风险等级要求,可分开写也可以合并写,e.g. risk:[ 2, 3 ] 则表示 所有投组资产风险等级都是 2 或 3
LARC: [ 0.30, 0.00, 0.00 ] #低阈值
UARC: [ 0.70, 0.70, 0.70 ] #高阈值
matrix-rtn-days: 20 # 计算回报率矩阵时,回报率滚动天数
asset-count: [5,5] # 投组资产个数。e.g. count 或 [min, max] 分别表示 最大最小都为count 或 最小为min 最大为max,另外这里也可以类似上面给不同风险等级分别配置
mpt: # mpt计算相关
......@@ -234,12 +235,12 @@ robo-executor: # 执行器相关
use: ${ROBO_EXECUTOR:backtest} # 执行哪个执行器,优先取系统环境变量ROBO_EXECUTOR的值,默认backtest
sync-data: ${SYNC_DATA:off} # 是否开启同步资料数据
backtest: # 回测执行器相关
start-date: 2022-02-16 # 回测起始日期
end-date: 2023-01-03 # 回测截止日期
start-date: 2018-11-26 # 回测起始日期
end-date: 2019-01-13 # 回测截止日期
sealing-period: 10 #调仓封闭期
start-step: ${BACKTEST_START_STEP:3} # 回测从哪一步开始执行 1:计算资产池;2:计算最优投组:3:计算再平衡信号以及持仓投组
start-step: ${BACKTEST_START_STEP:1} # 回测从哪一步开始执行 1:计算资产池;2:计算最优投组:3:计算再平衡信号以及持仓投组
end-step: ${BACKTEST_END_STEP:3} # 回测从哪一步执行完成后结束执行 1:计算资产池;2:计算最优投组:3:计算再平衡信号以及持仓投组
clean-up: on
clean-up: off
real: # 实盘执行器
export: ${EXPORT_ENABLE:off} # 是否开启报告
start-date: 2023-05-08 # 实盘开始时间
......
......@@ -266,7 +266,7 @@ class InvTrustPortfoliosHolder(DividendPortfoliosHolder):
# 若调仓当日,有基金产生配息
share_nav = {x: fund_nav * w / navs[x] for x, w in weight.items()}
share_nodiv_nav = {x: nav * w / nav_cals[x] for x, w in weight.items()}
if self.is_first_workday(day):
if self.is_transfer_workday(day):
div_forecast = asset_nav * self.month_dividend
else:
fund_av = self.init_nav
......@@ -311,10 +311,11 @@ class InvTrustPortfoliosHolder(DividendPortfoliosHolder):
'asset_nav': asset_nav,
})
def is_first_workday(self, day):
# 获取当月第一天的日期
first_day = date(day.year, day.month, 1)
first_work_day = first_day if is_workday(first_day) else next_workday(first_day)
def is_transfer_workday(self, day):
transfer_date = self._config['warehouse-transfer-date']
# 获取当月第n天的日期
transfer_date = date(day.year, day.month, transfer_date)
first_work_day = transfer_date if is_workday(transfer_date) else next_workday(transfer_date)
return day.day == first_work_day.day
def no_rebalance(self, day, risk: PortfoliosRisk, last_nav):
......@@ -352,7 +353,7 @@ class InvTrustPortfoliosHolder(DividendPortfoliosHolder):
weight_nodiv_nav = format_weight(weight_nodiv_nav)
asset_nav = fund_av
div_forecast = last_nav['div_forecast']
if self.is_first_workday(day):
if self.is_transfer_workday(day):
div_forecast = asset_nav * self.month_dividend
rhp.insert({
'date': day,
......
......@@ -6,7 +6,7 @@ from functools import reduce
from typing import List
import pandas as pd
from py_jftech import component, autowired, get_config, prev_workday
from py_jftech import component, autowired, get_config, prev_workday, workday_range
from py_jftech import is_workday
from api import PortfoliosBuilder
......@@ -48,7 +48,13 @@ class BaseRebalanceSignal(RebalanceSignal, ABC):
signal = rrs.get_last_one(day, risk, SignalType.NORMAL, effective=None)
if signal:
frequency = get_config('portfolios')['holder']['warehouse-frequency']
date = pd.to_datetime(day.replace(day=1)) + pd.DateOffset(months=frequency)
transfer_date = get_config('portfolios')['holder']['warehouse-transfer-date']
date = pd.to_datetime(signal['date'].replace(day=transfer_date))
# 说明发生了跨月份问题
if signal['date'].day > transfer_date:
if rrs.get_count(risk=PortfoliosRisk.FT3, effective=True) > 1:
date = date + pd.DateOffset(months=1)
date = date + pd.DateOffset(months=frequency)
date = date - timedelta(days=1)
# 指定周期末的工作日
date = date if is_workday(date) else prev_workday(date)
......
......@@ -37,12 +37,13 @@ class BacktestExecutor(RoboExecutor):
@staticmethod
def get_last_business_day(start_date, end_date):
start_date = prev_workday(start_date)
transfer_date = get_config('portfolios')['holder']['warehouse-transfer-date']
# 生成日期范围并转换为DataFrame
dates = pd.date_range(start_date, end_date, freq='M')
if dates[0] != start_date:
dates = dates.insert(0, start_date)
dates = pd.date_range(start_date, end_date, freq='MS', closed='right')
dates = [pd.to_datetime(f"{date.year}-{date.month}-{transfer_date}") for date in dates]
dates.insert(0, start_date)
df = pd.DataFrame({'dates': dates})
df['dates'] = df['dates'].apply(lambda x: prev_workday(x))
result = []
for i in range(0, len(df), get_config('portfolios')['holder']['warehouse-frequency']):
result.append(df.iloc[i]['dates'])
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment