Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Submit feedback
Sign in
Toggle navigation
R
robo-dividend
Project
Project
Details
Activity
Releases
Cycle Analytics
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Charts
Issues
0
Issues
0
List
Board
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Charts
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Charts
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
wenwen.tang
robo-dividend
Commits
3ccd4ee2
Commit
3ccd4ee2
authored
Oct 30, 2024
by
吕先亚
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
ai 通用性改动
parent
afe45bce
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
8 additions
and
9 deletions
+8
-9
EstimateMarketTrendV20.py
ai/EstimateMarketTrendV20.py
+1
-1
model_trainer.py
ai/model_trainer.py
+1
-1
training_data_builder.py
ai/training_data_builder.py
+6
-7
No files found.
ai/EstimateMarketTrendV20.py
View file @
3ccd4ee2
...
...
@@ -151,7 +151,7 @@ if __name__ == '__main__':
if
len
(
LABEL_RANGE
)
>
2
:
from
ai.reporter
import
do_reporter2
do_reporter2
()
do_reporter2
(
excel_name
=
"Forcast_Report_32_old.xlsx"
)
else
:
from
ai.reporter
import
do_reporter
...
...
ai/model_trainer.py
View file @
3ccd4ee2
...
...
@@ -44,7 +44,7 @@ class ModelTrainer(ABC):
for
predict
,
date
in
zip
(
y_pred
,
date_index
):
datas
.
append
(
{
'predict'
:
predict
,
'date'
:
date
,
'rbd_id'
:
self
.
_pid
,
'create_time'
:
datetime
.
now
()})
reporter
.
do_reporter2
(
records
=
datas
,
excel_name
=
'Backtest_Report_
chu
.xlsx'
)
reporter
.
do_reporter2
(
records
=
datas
,
excel_name
=
'Backtest_Report_
32_old
.xlsx'
)
# cm_display = ConfusionMatrixDisplay(confusion_matrix=result0, display_labels=labels)
# cm_display.plot()
...
...
ai/training_data_builder.py
View file @
3ccd4ee2
...
...
@@ -185,23 +185,22 @@ class TrainingDataBuilder(ABC):
# scale data
labels
=
list
(
LABEL_RANGE
.
keys
())
scaler
=
MinMaxScaler
(
feature_range
=
(
labels
[
-
1
],
labels
[
0
]))
# scaledX = scaler.fit_transform(X)
DataScaler
=
scaler
.
fit
(
X
)
scaledX
=
DataScaler
.
transform
(
X
)
scaledX_forecast
=
None
if
(
self
.
_toForecast
)
:
if
self
.
_toForecast
:
scaledX_forecast
=
DataScaler
.
transform
(
X_forecast
)
X_train
=
scaledX
y_train
=
y
X_test
=
[]
y_test
=
[]
date_index
=
[]
else
:
# Step 2: Split data into train set and test set
X_train
,
X_test
,
y_train
,
y_test
=
train_test_split
(
scaledX
,
y
,
test_size
=
0.02
,
shuffle
=
False
)
date_index
=
DataAll
[
'date'
][
-
len
(
X_test
):
-
self
.
_numForecastDays
]
.
to_numpy
()
# To avoid data leak, test set should start from numForecastDays later
X_test
=
X_test
[
self
.
_numForecastDays
:
]
y_test
=
y_test
[
self
.
_numForecastDays
:
]
return
X_train
,
X_test
,
y_train
,
y_test
,
scaledX_forecast
,
forecastDay
X_test
=
X_test
[
:
-
self
.
_numForecastDays
]
y_test
=
y_test
[
:
-
self
.
_numForecastDays
]
return
X_train
,
X_test
,
y_train
,
y_test
,
scaledX_forecast
,
forecastDay
,
date_index
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment